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Universidad de Extremadura, E-06071 Badajoz, Spain

(Received 11 October 2009; revised 22 January 2010; accepted 23 January 2010)

We examine the behaviour of a compound capillary jet from the spatio-temporal
linear stability analysis of the Navier–Stokes equations. We map the jetting–dripping
transition in the parameter space by calculating the Weber numbers for which
the convective/absolute instability transition occurs. If the remaining dimensionless
parameters are set, there are two critical Weber numbers that verify Brigg’s pinch
criterion. The region of absolute (convective) instability corresponds to Weber
numbers smaller (larger) than the highest value of those two Weber numbers. The
stability map is affected significantly by the presence of the outer interface, especially
for compound jets with highly viscous cores, in which the outer interface may play
an important role even though it is located very far from the core. Full numerical
simulations of the Navier–Stokes equations confirm the predictions of the stability
analysis.

1. Introduction
Compound capillary jets have a clear relevance for the production of microcapsules

and hollow and coaxial microfibres. The production of microcapsules is of especial
interest in a broad spectrum of applications and technological fields such as
encapsulation of food additives, targeted drug delivery and special material processing.
In these applications, the microcapsules contain an active agent surrounded by shell
made up of materials such as polymers, carbohydrates, fats and waxes. Hollow and
coaxial microfibres are of great interest for applications in material science.

Both microcapsules and microfibres are produced by stretching fluid interfaces
down to the micrometre scale. One can distinguish two approaches for carrying out
this process. In the first, the fluids are forced through orifices to get interfaces of
sizes similar to those of the orifices (Umbanhowar, Prasad & Weitz 2000; Basaran
2002). This procedure yields monodisperse collections of capsules (Stone, Stroock &
Adjari 2004), but is limited by the fact that the orifice may clog up for sizes below
a few microns. The second approach is based on the use of either hydrodynamic
(Gañán-Calvo 1998; Cohen et al. 2001; Bocanegra et al. 2005; Utada et al. 2005;
Christopher & Anna 2007; He 2008) or electric (Loscertales et al. 2002; Barrero &
Loscertales 2007; Gañán-Calvo & Montanero 2009) forces to stretch compound jets
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down to a scale much smaller than the orifice size. The ultimate breakage of the jets
can lead to the formation of micro- and nanocapsules with controlled structure and
narrow size distributions (Gañán-Calvo 1998; Bocanegra et al. 2005). If the liquid
solidifies before the jet breaks, hollow and coaxial nanofibres are obtained (Barrero &
Loscertales 2007).

The upper part of figure 1 shows the axisymmetric flow-focusing configuration,
which can be used to establish the compound capillary jet, which is the focus
of this paper. A core (shell) fluid is injected through an inner (outer) capillary
of representative diameter D1in (D1out ) at a flow rate Q1 (Q2). The representative
diameters D1in and D1out are generally selected as the outer diameter of the inner
tube and the inner diameter of the outer tube, respectively, since they define the gap
through which the shell fluid flows. The resulting compound meniscus is stretched
by a focusing air stream driven by a pressure drop ΔP until a thin jet is emitted.
Both the compound capillary jet and the gas current exit as a nearly parallel stream
through an orifice of diameter D separated by a distance H from the capillaries.
Figure 1 also shows typical compound capillary jets produced by an axisymmetric
flow-focusing device in our laboratory. In the present work, we only examine the local
axisymmetric stability of the compound jet, which is not significantly affected by the
presence of the gas stream.

The quality and structure of the resulting capsules mainly depends on the compound
jet breakup dynamics. Fundamentally, the compound jet behaviour is first determined
by whether all the perturbations are convected downstream (convective instability)
preserving a stable fluid ligament close to the orifice of the tapering meniscus (jetting
regime), or some of them travel upstream while growing (absolute instability), which
prevents the formation of the ligament (dripping regime) (Huerre & Monkewitz 1990).
The relationship between the local convective and absolute instabilities and the jetting
and dripping regimes has been reasonably well established: local convective instability
is a prerequisite for getting stable jets of finite length in a co-flowing arrangement
(Leib & Goldstein 1986; Gañán-Calvo, Herrada & Garstecki 2006; Gañán-Calvo
et al. 2007; Guillot et al. 2007; Si et al. 2009).

Linear stability analysis can provide valuable predictions for the parameter values
for which the convective/absolute (C/A) instability transition takes place. Chauhan
et al. (2006) examined the appearance of absolute instability in inviscid compound
jets. As the single-fluid jet, the compound jet becomes absolutely unstable below a
critical Weber number, which increases as the outer surface tension increases. For
convectively unstable states, the temporal analysis provides the wavelength of the
perturbation responsible for the jet breakup. This analysis reveals the existence of
the stretching and squeezing unstable modes (figure 2). These modes correspond to
in-phase and out-of-phase deformations of the inner and outer interfaces, respectively
(Sanz & Meseguer 1985; Chauhan et al. 2000). The film stretches in the stretching
mode because the two interfaces grow in phase. On the contrary, the perturbations
squeeze the fluid film in the squeezing mode because the two interfaces grow out of
phase. The stretching and squeezing modes are mainly driven by capillary forces at
the inner and outer interfaces, respectively. The growth rate of the stretching mode
is real and positive for wavenumbers smaller than the inverse of core radius, and
thus the mode is unstable for all waves with wavelength greater than the undisturbed
core circumference. The squeezing mode has a real and positive growth rate for
wavenumbers smaller than the inverse of the annulus radius, which implies that it
is unstable for all disturbances with wavelength greater than the undisturbed outer
circumference of the annulus. The stretching mode converges asymptotically to the
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Figure 1. Axisymmetric flow-focusing device (D1in =400 μm, D1out =700 μm, D = 250 μm,
H = 220 μm) used in the illustrative experiments shown below. The focusing, shell and core
fluids were compressed air, silicone oil of 0.005 Pa s in viscosity and a mixture of 80 %
water + 20 % black ink with traces (∼0.1%) of Tween 80, respectively. The values of the
control parameters were the following: (a) ΔP = 3 kPa, Q1 = 0.5 mL h−1, Q2 = 30 mL h−1

(multi-vesicle capsules); (b) ΔP =3 kPa, Q1 = 1 mL h−1, Q2 = 30 mL h−1 (mixed capsules of
one and two cores); (c) ΔP = 3 kPa, Q1 = 4 mL h−1, Q2 = 30 mL h−1 (single core capsules:
the outer jet breakup is modulated by the core content); and (d ) ΔP = 5 kPa, Q1 = 4 mL h−1,
Q2 = 30 mL h−1 (higher pressure drop inducing some irregularities).
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Figure 2. Sketch of the (a) stretching and (b) squeezing modes.

only unstable mode of a single jet (Tomotika 1935) as the outer interface departs from
the inner one, and it dominates the breakup process because its maximum growth
rate is larger than that of the squeezing mode (Sanz & Meseguer 1985; Chauhan
et al. 2000).

Nonlinear effects may modify not only quantitatively but also qualitatively both
the jetting–dripping transition and the breakup process in the jetting regime (Suryo,
Doshi & Basaran 2006). For instance, numerical solutions of a one-dimensional
model show that the jet breakup may be caused by a squeezing motion of the
interfaces for highly viscous cores (Craster, Matar & Papageorgiou 2005). In the
highly viscous annulus case, the simulations demonstrate the possibility of breakup of
either the core or the annulus, depending on the initial ratio of the radii (Craster et al.
2005). Experiments (see e.g. figure 1) confirm the intricate dependence of the capsule
structure on the governing parameters, showing the fundamental role of the initial
ratio of the radii, the most unstable perturbation wavelength and its spatio-temporal
growth rate (Bocanegra et al. 2005). A certain desired capsule structure predicted
from the simple conservation of mass principle applied to the compound jet would
be compromised or destroyed if any of the jet components breaks up unexpectedly.
In this sense, convective instability may be the adequate regime to massively produce
microcapsules from compound jets in a controlled way. It is, therefore, of fundamental
importance to determine the operating conditions that prevent absolute instability
and thus guarantee convective instability.

In this paper, we carry out a linear spatio-temporal stability analysis of a viscous
compound capillary jet to map out the parameter regions of convective and absolute
instabilities. This analysis is validated for some configurations by direct volume-of-
fluid numerical simulations. The method is briefly described in § 2. The results of
the linear stability analysis and full numerical simulations are presented in § 3. The
conclusions are given in § 4.

2. Method
2.1. Linear stability analysis

Consider a compound capillary jet consisting of a cylindrical core of radius R1,
density ρ1 and viscosity μ1, flowing inside an annulus of outer radius R2, density
ρ2 and viscosity μ2. We assume that axial momentum is diffused throughout the
entire jet, and thus the two fluids move with the same velocity V . This occurs for
moderately and highly viscous fluids immediately behind the emitting section and
for low-viscosity fluids in a region sufficiently far from the emitting section. The
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surface tensions of the inner and outer interfaces are γ1 and γ2, respectively. The
compound jet is moving inside a gas of negligible density and viscosity. Below, we
make all the variables dimensionless using R1, V , R1/V and ρ1V

2 as the characteristic
length, velocity, time and pressure, respectively. The jet behaviour can be described in
terms of the ratios of radii R ≡ R2/R1, densities ρ ≡ ρ2/ρ1, viscosities μ ≡ μ2/μ1 and
surface tensions γ ≡ γ2/γ1, and in terms of the Reynolds Re ≡ ρ1V R1/μ1 and Weber
We = ρ1V

2R1/γ1 numbers.
Using a Lagrangian frame of reference solidly moving with both fluids, we propose

the following dependence for the velocity vj (r, t) and pressure pj (r, t) fields, and for
the positions fj (θ, z, t) of the interfaces:

vj (r, t) = ε {Uj (r), Vj (r), Wj (r)}ei(mθ+kz−ωt) + c.c., (2.1a)

pj (r, t) − δj1

We
= ε Pj (r)e

i(mθ+kz−ωt) + c.c., (2.1b)

fj (θ, z, t) − Rδj2 = ε Fje
i(mθ+kz−ωt) + c.c. (2.1c)

In (2.1a) and (2.1b), j =1 and 2 denote the core and annulus fluid domains,
respectively, while in (2.1c) they denote the inner and outer interfaces, respectively.
In addition, m is the azimuthal wavenumber, k = kr + iki is the axial wavenumber,
ω =ωr + iωi is the frequency, δij is the Kronecker delta and c.c. denotes complex
conjugate.

Introducing these perturbations into the incompressible Navier–Stokes equations
and neglecting terms in ε2, we get

U
′

j + Uj/r + imVj/r + ikWj = 0, (2.2a)

−ρδj2 iωUj + P
′

j =
μδj2

Re

[
U

′′

j + U
′

j /r − (m2 + 1)Uj/r2 − k2Uj − 2imVj/r2
]
, (2.2b)

−ρδj2 iωVj + imPj/r =
μδj2

Re

[
V

′′

j + V
′

j /r − (m2 + 1)Vj/r2 − k2Vj + 2imUj/r2
]
, (2.2c)

−ρδj2 iωWj + ikPj =
μδj2

Re

(
W

′′

j + W
′

j /r − m2Wj/r2 − k2Wj

)
, (2.2d)

where the primes denote derivative with respect to r . The general solution to (2.2),
verifying the regularity conditions

U1(0) = V1(0) = W
′

1(0) = 0 for m = 0, U1(0) + iV1(0) = W1(0) = 0 for m = 1,

(2.3a)

U1(0) = V1(0) = W1(0) = 0 for m � 2, (2.3b)

is

Uj (r) = i cj1 I ′
m(k r) + i cj2 I ′

m(kj r) + im cj3

Im(kj r)

kj r

+ δj2

[
i d1 K ′

m(k r) + i d2 K ′
m(k2 r) + im d3

Km(k2 r)

k2 r

]
, (2.4a)

Vj (r) = −m cj1

Im(k r)

k r
− m cj2

Im(kj r)

kj r
− cj3 I ′

m(kj r)

+ δj2

[
−m d1

Km(k r)

k r
− m d2

Km(k2 r)

k2 r
− d3 K ′

m(k2 r)

]
, (2.4b)
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Wj (r) = −cj1 Im(k r) − cj2 kj

Im(kj r)

k

+ δj2

[
−d1 Km(k r) − d2 kj

Km(kj r)

k

]
, (2.4c)

Pj (r) = −ρδj2ω cj1

k
Im(k r) + δj2

[
−ρω d1

k
Km(k r)

]
. (2.4d)

Here, j = 1 and 2 denote the core and annulus fluid domains, respectively, and Im

and Km are the modified Bessel functions of the first and second kind, respectively.
In addition, k1 = ± [k2 − iωRe]1/2, k2 = [k2 − iωRe ρ/μ]1/2, and {cj1, cj2, cj3, d1, d2,
d3} are nine arbitrary constants. It must be noted that (2.4) is symmetric with respect
to k1 (i.e. is invariant under the change k1 → − k1).

The non-slip condition {U1 =U2, V1 =V2, W1 = W2} at the inner interface r = 1
yields a linear system of equations that allows one to obtain {d1, d2, d3} in terms of
{cj1, cj2, cj3}. The condition of dynamical equilibrium at the inner interface r = 1 for
the normal and two tangential components leads to

P1 − P2 +
i(1 − m2 − k2)

We ω
U1 =

2

Re
(U

′

1 − μU
′

2), (2.5a)

W
′

1 + ikU1 = μ(W
′

2 + ikU2), (2.5b)

imU1 + V
′

1 − V1 = μ(imU2 + V
′

2 − V2), (2.5c)

where we use the kinematic compatibility condition F1 = iUj (1)/ω to eliminate F1

from (2.5a). Analogously, the condition of dynamical equilibrium at the outer interface
r = R for the normal and two tangential components leads to

P2 +
i[(1 − m2)/R2 − k2]

(We/γ ) ω
U2 =

2μ

Re
U

′

2, (2.6a)

W
′

2 + ikU2 = 0, (2.6b)

imU2 + V
′

2 − V2 = 0. (2.6c)

The sets of (2.5) and (2.6) constitute a linear system of equations for {cj1, cj2, cj3}.
The solvability condition Det(Δij ) = 0, with Δij being the 6 × 6 matrix associated
with that the system of equations, yields the dispersion relation in the Lagrangian
frame of reference. To determine the values of the parameters for which the basic flow
undergoes a C/A instability transition, we should explore the response of the system
to perturbations characterized by a complex axial wavenumber k (spatio-temporal
analysis), observed by a fixed observer (Huerre & Monkewitz 1990). To change the
frame of reference from a travelling observer to a fixed one, the wave frequency
ω should be replaced by ω − k in the calculations (Leib & Goldstein 1986). The
result is

Dm(k, ω; R, ρ, μ, γ, Re, We) = 0. (2.7)

An explicit expression of (2.7) cannot be provided. A Mathematica notebook
containing the dispersion relation can be obtained upon request from the authors.

Non-axisymmetric perturbations (m �= 0) have an aerodynamic origin. If a (single
or compound) jet co-flows with an outer stream with non-negligible density moving
with a different velocity, then a perturbation at the interface causes the outer stream
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to accelerate as it passes a crest, lowering the dynamic pressure at that point. This
encourages the crest to increase in size. This instability mechanism is absent in the
fluid configuration considered in the present work because the outer stream is assumed
to have a negligible density. For this reason, we shall focus on axisymmetric m =0
perturbations.

The critical Weber numbers We∗ corresponding to the C/A instability transitions
are determined by a spatio-temporal analysis of the dispersion relation (2.7). We
calculate these critical Weber numbers We∗ as those values of We for which Brigg’s
pinch condition (Briggs 1964; Huerre & Monkewitz 1990) is satisfied. This condition
establishes that there must be at least one pinching of a k+ and a k− spatial branch
with ωi = 0, where k+ is the path of Dm = 0 in the complex k-plane that moves into
the ki > 0 half-plane as ωi increases, while the k− branch always remains in the ki < 0
half-plane as ωi increases. If k+ crosses the kr axis through the point kr = 1 (kr = 1/R),
the C/A instability transition is associated with the stretching (squeezing) mode.

The wave frequencies were calculated as the roots of the trascendental equation
(2.7) for fixed values of the wavenumber and the rest of parameters characterizing
the problem. These roots were found numerically by means of the Newton–Raphson
method. Mapping the convective and absolute instability regions over the whole
parameter space {R,ρ, μ, γ , Re, We} requires a very long computing time owing to
the high dimensionality and the complexity of (2.7). To facilitate the calculations, we
used a Chebyshev spectral collocation technique based on the approach developed
by Khorrami (1991) for the stability analysis of swirling flows in pipes. This method
has been successfully used to analyse, for instance, the stability of low-density and
low-viscosity fluid jets and spouts in an unbounded co-flowing liquid environment
(Gañán-Calvo et al. 2006). Preliminary explorations of the dispersion relation over the
k-plane were carried out by the spectral technique to find approximately the saddle
points verifying Brigg’s criterion. The results were used as initial guesses to determine
the critical Weber numbers from the exact dispersion relation (2.7).

2.2. Numerical simulations

In order to validate our stability analysis, we carried out six ‘numerical experiments’
by means of the volume-of-fluid method implemented by the commercial solver
Fluent v 6.3. Details of the method can be found elsewhere (Herrada et al. 2008).
We simulated the flow of a compound capillary jet surrounded by a fluid with
viscosity and density 100 times smaller than the corresponding values of the annulus.
The compound jet and the surrounding gas were enclosed by a cylindrical tube of
radius Rext = 8 and length L = 100. Appropriate boundary conditions were imposed
to get results under conditions similar to those of the stability analysis. Specifically,
a uniform axial velocity profile at the tube inlet (z = 0) was imposed for the three
phases, while symmetric and slip conditions were used at the jet axis (r =0) and the
tube wall (r = Rext ), respectively. Finally, outflow conditions are considered at the
tube outlet (z = L). The results were computed with a time step Δt = 0.2 in a uniform
mesh with N = 80 × 1000 points. We verified that similar results are obtained for
larger values of Rext , L, Δt−1 and N .

In the simulations, we first set the values of the parameters characterizing the
fluid configuration. Then, the simulation starts by injecting the two liquids and the
surrounding gas of negligible density and viscosity in the empty tube. The system
evolves until reaching a quasi-periodic regime. If a compound jet long compared to
its diameter is formed in that regime, then the regime corresponds to steady jetting.
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On the contrary, if drops are ejected immediately behind the tube inlet (figure 6), it
corresponds to dripping (figure 7).

3. Results
3.1. Linear stability analysis

Because of the high dimensionality of the parameter space, we shall only consider
capillary jets consisting of fluids with equal kinematic viscosities (ρ = μ). In general,
there are at least two saddle points for a given set of the flow parameters. The
dominant saddle point is the one with the largest absolute growth rate. Here, we call
‘critical’ Weber numbers those values for which a saddle point verifies Brigg’s pinch
criterion. If that saddle point is the dominant one, then the critical Weber number is
also the ‘transitional’ Weber number. The transitional Weber number indicates when
the true (physical) C/A instability transition takes place.

In order to clarify the difference between the critical and transitional Weber
numbers, we consider here a virtual experiment. Assume that all the parameters
characterizing the fluid configuration are fixed in the experiment excepting the We,
which can be varied at will. For sufficiently large values of We, steady jetting is
encountered. Decreasing progressively We results in a ‘transitional’ Weber number for
which the transition from the jetting to the dripping regimes occurs. This transitional
Weber number is the value for which the ‘dominant’ saddle point (i.e. that with the
largest absolute growth rate) of the dispersion relation verifies Brigg’s pinch criterion.
One can keep on decreasing the Weber number in the dripping regime. In this case,
other saddle points (different from the dominant one) may also verify Brigg’s pinch
criterion. The ‘critical’ Weber numbers for which this occurs do not correspond to
any true (physical) C/A instability transition.

Figure 3 shows the critical Weber number as a function of R for a liquid–liquid
configuration (ρ = 1) and different choices of Re and γ . The comparison with the
results obtained from the Chebyshev spectral collocation technique (circles) for some
cases shows the accuracy of that technique. If the remaining parameters are set, there
are two critical Weber numbers (solid and dashed lines). In both cases, the C/A
instability transition is associated with the stretching mode. The transitional Weber
number is the higher value of those two critical Weber numbers. For that Weber
number, the growth rate of the dominant saddle point becomes positive. The region
of absolute (convective) instability corresponds to Weber numbers smaller (larger)
than the transitional Weber number.

As can be observed in figure 3, one of the critical Weber numbers (dashed lines)
determines the true C/A instability transition for large R. It tends to the transitional
Weber number for a jet co-flowing with an unbounded stream (Gañán-Calvo et al.
2006, 2007) as R → ∞. There is a radius ratio R∗ below which the other critical Weber
number (solid lines) becomes dominant. This Weber number increases as R decreases
but it does not diverge as R → 1. In this limit, the two interfaces overlap, and the
compound jet behaves as a single jet in vacuum with an effective surface tension
γ1 + γ2. In fact, we verified that the transitional value of We/(1 + γ ) obtained for
R → 1 coincides with that calculated by Leib & Goldstein (1986) for a single jet in
vacuum. The results obtained for R → 1 show that compound jets with an infinitely
thin annulus could, in principle, be produced with a co-flowing configuration. This
behaviour resembles the ‘unconditional jetting’ phenomenon described by Gañán-
Calvo et al. (2007) and Gañán-Calvo (2008), where infinitely thin jets are convectively
unstable over a critical finite capillary number, Ca = We/Re. This means that, in
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Figure 3. Critical Weber number We∗ as a function of the radius ratio R for ρ = μ= 1,
Re = 0.1, 1, 10 and 100, and γ = 0.5, 1 and 2. The solid and dashed lines correspond to the
two critical Weber numbers. The transitional Weber number, which indicates the true C/A
instability transition, is the larger value of those two critical Weber numbers. The circles are
solutions obtained from the Chebyshev spectral collocation technique for Re = 0.1 and γ = 2,
and Re =10 and γ = 1. The shaded areas in the graphs for Re = 10 and 100 are the intervals
of R for which the presence of an outer interface with γ =0.5 favours the jetting regime. The
triangles (squares) correspond to the simulations in the jetting (dripping) regime for γ = 1.

principle, very thin jets could be produced if the source used to emit them were stable
under such condition (Gañán-Calvo & Montanero 2009).

Essentially, the outer interface reduces the parameter region in which the compound
jet is convectively unstable. As in the inviscid case (Chauhan et al. 2006), the
transitional Weber number increases with γ . In other words, the outer interface
favours the transition from the jetting to the dripping regimes. There are some
narrow parameter windows (see e.g. the shaded areas in the graphs for Re = 10 and
100) that constitute exceptions to the above rule. In figure 3, the intersection between
the solid and dashed lines at R = R∗ moves towards larger values of R as γ increases or
Re decreases. This means that the influence of the outer interface on the stability map
increases as it becomes stiffer or the core becomes more viscous. Indeed, for Re = 0.1
and γ = 2, the transitional Weber number always exceeds the value corresponding to
the unbounded outer stream. This implies that, under certain conditions, the outer
interface might affect the stability of the inner jet even though they were very far
from each other. In that case, the dispersion relations calculated for jets moving
in unbounded liquids (see e.g. Tomotika 1935; Funada, Joseph & Yamashita 2004;
Gañán-Calvo et al. 2006, 2007; Montanero & Gañán-Calvo 2008; Utada et al. 2008)
may lead to inaccurate predictions for the jetting–dripping transition. It must be
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noted that this lack of accuracy does not occur in the (simpler) temporal analysis of
the dispersion relation, in which one can neglect the effect of distant boundaries and
still obtain accurate results for the temporal growth rates. For instance, the stretching
mode solution for R2/R1 � 10 matches that of Tomotika (1935) (see e.g. figure 7 in
Chauhan et al. 2000).

Interestingly, the fact that the presence of a distant outer boundary can affect the
absolute instability of the system has been observed in other configurations, such as
single jets and wakes (Juniper 2007; Healey 2008), and boundary and mixing layers
(Healey 2007, 2009). In all these cases, the fluids were inviscid and confined by rigid
boundaries. Our results show that the same effect can be observed for viscous fluids
limited by an outer interface, which indicates that this unexpected behaviour could
be widespread.

For a given set of parameters, there are at least two saddle points of (2.7) in the
k complex plane associated with the stretching mode. For R >R∗, one of them has
a growth rate greater than the other, while the opposite occurs for R <R∗. The two
saddle points have zero growth rate for R = R∗ and We = We∗, and thus verify Brigg’s
pinch criterion (Briggs 1964) simultaneously. This peculiar situation is illustrated in
figure 4, where one can observe how the saddle points ‘couple each other’ through
one of the spatial branches. This phenomenon has not previously been observed in
capillary systems. It has a mathematical character, because it corresponds to a jetting–
dripping transition that could not be distinguished from others experimentally.

The case ρ, μ 
 1 is relevant for applications such as the production of hollow
microfibres from co-flowing systems. Figure 5 illustrates the results for ρ = μ =103,
γ =1, and different values of the Reynolds number. The results for Re = 100 are
qualitatively the same as those for liquid–liquid jets: there are two critical Weber
numbers: one determines the jetting–dripping transition for large R, while the other
is dominant for small R. Interestingly, only one critical Weber number was found for
Re = 0.1, 1 and 10 within the interval of R explored. In all the cases, the transitional
Weber number does not diverge for R → 1, so that infinitely thin hollow fibres could
in principle be produced by a co-flowing arrangement.

3.2. Numerical simulations

We performed numerical simulations to illustrate the breakup process of the
compound jet for some selected cases. It must be noted that simulations for large
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Figure 5. Critical Weber number We∗ as a function of the radius ratio R for ρ = μ= 103,
Re = 0.1, 1, 10 and 100, and γ =1. The solid and dashed lines correspond to the two critical
Weber numbers found for each case. The transitional Weber number, which indicates the true
C/A instability transition, is the larger value of those two critical Weber numbers.
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Figure 6. Drop formation in the jetting regime for ρ = μ= Re = γ = 1, R = 1.5 and We = 0.5.
The figure shows snapshots over an interval of time that approximately corresponds to the
drop formation period.

Re require refined meshes and longer tubes because of the slower growth of the
perturbations in the jetting regime. In addition, the agreement between the linear
stability analysis and the simulations is expected to improve as Re decreases because
the relative magnitude of the nonlinear convective term decreases with Re. Finally,
the computing time increases sharply with R. For these reasons, we considered the
intermediate cases Re =1 and 10, γ = 1 and R = 1.5 and 2.

Figure 6 allows one to visualize the drop formation cycle in the jetting regime. The
instants of time t = 0 and 175 approximately correspond to the same state in the
cycle, just before the emission of the compound drop. One can observe how the drop
forms between those instants of time due to the growth of a stretching perturbation,
consistent with the prediction of the linear temporal stability analysis (Chauhan et al.
2000). Because its amplitude is small compared with the size of the incipient drop,
it cannot be appreciated in the figure. The stretching perturbation cannot travel
upstream and thus a ligament remains practically stable for z � 30. Figure 7 shows
the drop formation in the dripping regime. In this case, the perturbations propagate
upstream and the compound jet drips periodically at the tube inlet. The drops are the
consequence of a stretching process too, as predicted by our spatio-temporal stability
analysis. The triangles and squares in figure 3 correspond to six simulations in the
jetting and dripping regimes, respectively. As can be observed, they are consistent
with the predictions for the C/A instability transition.
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Figure 7. Drop formation in the dripping regime for ρ = μ= Re = γ =1, R = 1.5 and
We = 0.3. The figure shows snapshots over an interval of time that approximately corresponds
to the drop formation period.
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Figure 8. Radius Rout of the inner drop at the tube outlet as a function of time in the periodic
regime for Ω = 0.3 (solid lines) and 0.5 (dashed lines). The flow parameters in (a) and (b) are
those of figures 5 and 6, respectively.

The response of the compound jet to external perturbations is qualitatively different
in the jetting and dripping regimes. In the jetting regime, the jet evolution can
be significantly altered by introducing unstable modes with small but finite initial
amplitudes, which may ultimately dominate the breakup process. On the contrary,
the jet dynamics in the dripping regime are essentially determined by the absolute
instability, and the effects of small external perturbations are generally negligible.
Figures 8(a) and 8(b) show the simulation results for the flow perturbed artificially
by introducing a uniform harmonic perturbation of frequency Ω in the velocity
distribution at the tube inlet. The amplitude of the perturbation was 1 % of the
velocity magnitude. The figures show the radius Rout of the inner drop at the tube
outlet in the periodic regime, defined as

Rout (t) =

√
2

∫ 8

0

α1(t, r)r dr, (3.1)

where α1(t, r) is the volume fraction of the inner liquid at the tube outlet. Figures 8(a)
and 8(b) show the results obtained for Ω =0.3 (solid lines) and 0.5 (dashed lines).
The flow parameters in figures 8(a) and 8(b) are those of figures 6 and 7, respectively,
corresponding to the jetting and dripping regimes. In the jetting regime, the breakup
process depends significantly on the external perturbation frequency: smaller inner
drops were produced with a higher frequency for Ω = 0.5. However, the jet dynamics
are almost independent of Ω in the dripping regime, which shows that the breakup
process is dominated by the intrinsic dynamics of the system in this case.
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4. Conclusions
The jetting–dripping transition in compound capillary jets has been analysed from

the linear stability analysis. The existence of an outer interface generally favours
the absolute instability of the stretching mode leading to the dripping regime. The
results for liquid–liquid jets (figure 3) show that this effect increases with the outer
interface surface tension and/or the jet core viscosity. For moderately low Reynolds
numbers (Re � 0.1), the role played by the outer interface is noticeable even though it
is located very far from the core (R � 100), in contrast to what was naturally assumed
in previous works (see e.g. Tomotika 1935; Funada et al. 2004; Gañán-Calvo et al.
2006, 2007; Montanero & Gañán-Calvo 2008; Utada et al. 2008). The transitional
Weber number remains bounded in the limit R → 1, which implies that the jetting
regime can be found in compound jets with an infinitely thin annulus. The same
result was found for the gas–liquid configuration (figure 5). This is analogous to the
‘unconditional jetting’ phenomenon (Gañán-Calvo et al. 2007; Gañán-Calvo 2008),
where infinitely thin jets can be produced above a finite critical capillary number. The
numerical simulations of the nonlinear Navier–Stokes equations carried out in this
work are in agreement with the above conclusions.
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DPI2007-63559 is gratefully acknowledged.
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